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ABSTRACT
Amazon Aurora is a high-throughput cloud-native relational data-
base offered as part of AmazonWeb Services (AWS). One of themore
novel differences between Aurora and other relational databases is
how it pushes redo processing to a multi-tenant scale-out storage
service, purpose-built for Aurora. Doing so reduces networking
traffic, avoids checkpoints and crash recovery, enables failovers to
replicas without loss of data, and enables fault-tolerant storage that
heals without database involvement. Traditional implementations
that leverage distributed storage would use distributed consensus al-
gorithms for commits, reads, replication, and membership changes
and amplify cost of underlying storage. In this paper, we describe
howAurora avoids distributed consensus under most circumstances
by establishing invariants and leveraging local transient state. Do-
ing so improves performance, reduces variability, and lowers costs.
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1 INTRODUCTION
IT workloads are increasingly moving to public cloud providers
such as AWS. Many of these workloads require a relational database.
Amazon Relational Database Service (RDS) provides a managed
service that automates database provisioning, operating system
and database patching, backup, point-in-time restore, storage and
compute scaling, instance health monitoring, failover, and other
capabilities. Our experience managing hundreds of thousands of
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database instances in RDS led to the design requirements for Aurora,
a high-throughput cloud-native relational database.

In our earlier paper [12], we provided an overview of the design
considerations behind Aurora. A key contribution of that paper is
to show that, on a fleet-wide basis, it is insufficient to treat failures
as independent. At a minimum, it is necessary to consider the
correlated impact of the largest unit of failure in addition to the
background noise of on-going independent failures. In AWS, the
largest unit of failure a systemmay need to tolerate is an Availability
Zone (AZ). An AZ is a subset of a Region that is connected to
other AZs through low-latency networking links, but is isolated for
most faults, including power, networking, software deployments,
flooding, and other phenomena. Aurora supports “AZ+1” failures,
resulting in six copies of data, spread across three AZs, a 4/6 write
quorum, and a 3/6 read quorum as illustrated in Figure 1. Aurora
implements quorum membership changes to handle unexpected
failures, heat management, as well as planned software upgrades.
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Figure 1: Why are 6 copies necessary ?

Quorum models, such as the one used by Aurora, are rarely used
in high-performance relational databases, despite the benefits they
provide for availability, durability, and the reduction of latency jitter.
We believe this is because the underlying distributed algorithms
typically used in these systems – two-phase commit (2PC), Paxos
commit, Paxos membership changes, and their variants – can be
expensive and incur additional network overheads. The commercial
systems we have seen built on these algorithms may scale well but
have order-of-magnitude worse cost, performance, and peak to
average latency than a traditional relational database running on a
single node against local disk.
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In this paper, we show how Aurora leverages only quorum I/Os,
locally observable state, and monotonically increasing log order-
ing to provide high performance, non-blocking, fault-tolerant I/O,
commits, and membership changes. We limit our discussion to
single-writer databases with read replicas. The approach described
below is extensible to multi-writer databases by ordering writes at
database nodes, storage nodes, and using a journal to order opera-
tions that span multiple database instances and multiple storage
nodes. We describe the following contributions:

(1) How Aurora performs writes using asynchronous flows, es-
tablishes local consistency points, uses consistency points
for commit processing, and re-establishes them upon crash
recovery. (Section 2)

(2) How Aurora avoids quorum reads and how reads are scaled
across replicas. (Section 3)

(3) How Aurora uses quorum sets and epochs to make non-
blocking reversible membership changes to process failures,
grow storage, and reduce costs. (Section 4)

Finally, we briefly survey related work in Section 5 and present
concluding remarks in Section 6.

2 MAKINGWRITES EFFICIENT
In this section, we review the Aurora storage architecture, how
storage is distributed, and our quorum model. We next describe the
writes performed by Aurora database instances, and how writes
are batched to storage nodes. We then describe how we maintain
and advance consistency points across distributed storage and how
we re-establish consistency upon crash recovery.

2.1 Aurora System Architecture
Aurora uses a service-oriented architecture where database in-
stances are loosely coupled with a multi-tenant scale-out storage
service that abstracts a segmented redo log. Each database instance
acts as a SQL endpoint and includes most of the components of
a traditional database kernel (query processing, access methods,
transactions, locking, buffer caching, and undo management). Some
database functions, including redo logging, materialization of data
blocks, garbage collection, and backup/restore, are offloaded to our
storage fleet.

Aurora uses a quorummodel, where the database reads from and
writes to a subset of copies of data. Formally, a quorum system that
employs V copies must obey two rules. First, the read set, Vr , and
the write set, Vw , must overlap on at least one copy. This ensures a
data item is not read and written by two transactions concurrently
and the read quorum contains at least one site with the newest
version of the data item. Second, the write set must overlap with
prior write sets, which can be done by ensuring thatVw >V /2. This
ensures two write operations from two transactions cannot occur
concurrently on the same data item.

Aurora storage is partitioned into segments that individually
store the redo log for their portion of the database volume as well
as coalesced data blocks. The activities on the storage node are
shown in more detail in Figure 2. Foreground activity in a storage
node consists of (1) receiving redo records, (2) writing them to an
update queue, and acknowledging them back. In background, the

storage node (3) sorts and groups records, (4) gossips with peers to
fill in missing records, (5) coalesces them into data blocks, (6) backs
them up to Amazon Simple Storage Service (S3), (7) garbage collects
backed-up data that will no longer be referenced by an instance,
and (8) periodically scrubs data to ensure checksums continue to
match the data on disk.
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Figure 2: Activity in Aurora Storage Nodes

Segments in Aurora are the minimum unit of failure, with faults
monitored and repaired automatically as part of the service. Seg-
ments are small, currently representing no more than 10GB of
addressable data blocks in the database volume. Segments are repli-
cated into protection groups, using V = 6, Vw = 4, and Vr = 3.
These six copies are spread across three AZs, with two copies in
each of the three AZs. Assuming a 10 second window to detect
and repair a segment failure, it would require two independent
segment failures as well as an AZ failure in the same 10 second
period to lose the ability to repair a quorum. This may seem overly
conservative. We don’t think so. AZ failures are a correlated failure
of two members in each and every quorum. Across a large fleet,
some small number of quorums will be degraded, with some quo-
rum member already failed at the time of an AZ failure. The time
it takes to repair the failure of this quorum member is the time a
database is vulnerable to loss of data with one additional fault.

Protection groups are concatenated together to form a storage
volume, which has a one to one relationship with the database
instance. While the redo log is segmented and spread across storage
nodes, the Log Sequence Number (LSN) space is common across
the database volume, monotonically increasing, and allocated by
the database instance. This is the key invariant that allows Aurora
to avoid distributed consensus for most operations.

2.2 Writes in Aurora
In Aurora, the only writes that cross the network from the database
instance to the storage node are redo log records. No data blocks
are written from the database instance, not for background writes,
not for checkpointing, and not for cache eviction. Instead, redo
log application code is run within the storage nodes, materializing
blocks in background or on-demand to satisfy a read request.
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Changes to data blocks modify the image in the Aurora buffer
cache and add the corresponding redo record to a log buffer. These
are periodically flushed to a storage driver to be made durable.
Inside the driver, they are shuffled to individual write buffers for
each storage node storing segments for the data volume. The dri-
ver asynchronously issues writes, receives acknowledgments, and
establishes consistency points.

Each log record stores the LSN of the preceding log record in the
volume, the previous LSN for the segment, and the previous LSN
for the block being modified. The block chain is used by the storage
node to materialize individual blocks on demand. The segment
chain is used by each storage node to identify records that it has
not received and fill in these holes by gossiping with other storage
nodes. The full log chain is not needed by an individual storage
node but provides a fallback path to regenerate storage volume
metadata in case of a disastrous loss of metadata state.

Many database systems boxcar redo logwrites to improve through-
put. There is a challenge in deciding, with each record, whether
to issue the write, to improve latency, or to wait for subsequent
records, to improve write efficiency and throughput. Waiting cre-
ates performance jitter since early requests entering the boxcar
have to wait for later requests or a timeout to fill the request. Jitter
is greatest under low load when the boxcar times out.

In Aurora, there are many segments partitioning the redo log and
the opportunity to boxcar are lower than with a single unsegmented
redo log. Aurora handles this by submitting the asynchronous net-
work operation when it receives the first redo log record in the
boxcar but continuing to fill the buffer until the network operation
executes. This ensures requests are sent without boxcar latency and
jitter while packing records together to minimize network packets.

In Aurora, all log writes, including those for commit redo log
records, are sent asynchronously to storage nodes, processed asyn-
chronously at the storage node, and asynchronously acknowledged
back to the database instance.

2.3 Storage Consistency Points and Commits
A traditional relational database working with local disk would
write a commit redo log record, boxcar commits together using
group commit, and flush the log to ensure that it has been made
durable. When working with remote storage, it might use a two-
phase commit, or a Paxos commit, or variant, to establish a con-
sistency point since there is no individual flush operation across
all storage nodes. This is heavyweight and introduces stalls and
jitter into the write path. Distributed commit protocols also have
failure modalities different from those of quorum writes, making it
complex to reason about availability and durability.

As a storage node receives new log records, it may locally ad-
vance a Segment Complete LSN (SCL), representing the latest point
in time for which it knows it has received all log records. More
precisely, SCL is the inclusive upper bound on log records continu-
ously linked through the segment chain without gaps. SCL is used
by storage nodes as a compact way to identify missing writes when
gossiping with their peers in a protection group. Note since any

given write may be lost for any reason we need to tolerate missing
writes in the storage nodes.

SCL is sent by the storage node as part of acknowledging a write.
Once the database instance observes SCL advance at four of six
members of the protection group, it is able to locally advance the
Protection Group Complete LSN (PGCL), representing the point
at which the protection group has made all writes durable. For
example, Figure 3 shows a database with two protection groups,
PG1 and PG2, consisting of segments A1-F1 and A2-F2 respectively.
In the figure, each solid cell represents a log record acknowledged
by a segment, with the odd numbered log records going to PG1 and
the even numbered log records going to PG2. Here, PG1’s PGCL is
103 because 105 has not met quorum, PG2’s PGCL is 104 because
106 has not met quorum, and the database’s VCL is 104 which is the
highest point at which all previous log records have met quorum.

Figure 3: Storage Consistency Points

For a database, it is not enough for individual writes to be made
durable, the entire log chain must be complete to ensure recoverabil-
ity. The database instance also locally advances a Volume Complete
LSN (VCL) once there are no pending writes preventing PGCL from
advancing for one of its protection groups. No consensus is required
to advance SCL, PGCL, or VCL – all that is required is bookkeep-
ing by each individual storage node and local ephemeral state on
the database instance based on the communication between the
database and storage nodes.

This is possible because storage nodes do not have a vote in
determining whether to accept a write, they must do so. Locking,
transaction management, deadlocks, constraints, and other con-
ditions that influence whether an operation may proceed are all
resolved at the database tier. Processing offloaded to the Aurora
storage nodes can progress by executing idempotent operations
using local state. This also ensures that failed storage nodes can
transparently be repaired without involving the database instance.

A commit is acknowledged by the database to its caller once
it is able to affirm that all data modified by the transaction has
been durably recorded. A simple way to do so is to ensure that the
commit redo record for the transaction, or System Commit Number
(SCN), is below VCL. No flush, consensus, or grouping is required.

Aurora must wait to acknowledge commits until it is able to
advance VCL beyond the requesting SCN. Typically, this would
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require stalling the worker thread acting upon the user request. In
Aurora, user sessions are multiplexed to worker threads as requests
are received. When a commit is received, the worker thread writes
the commit record, puts the transaction on a commit queue, and
returns to a common task queue to find the next request to be pro-
cessed. When a driver thread advances VCL, it wakes up a dedicated
commit thread that scans the commit queue for SCNs below the
new VCL and sends acknowledgements to the clients waiting for
commit. There is no induced latency from group commits and no
idle time for worker threads.

2.4 Crash Recovery in Aurora
Aurora is able to avoid distributed consensus during writes and
commits by managing consistency points in the database instance
rather than establishing consistency across multiple storage nodes.
But, instances fail. Customers shut them down, resize them, and
restore them to older points in time. The time we save in the normal
forward processing of commits using local transient state must be
paid back by re-establishing consistency upon crash recovery. This
is a trade worth making since commits are many orders of magni-
tude more common than crashes. Since instance state is ephemeral,
the Aurora database instance must be able to construct PGCLs and
VCL from local SCL state at storage nodes.

CRASH

Log records Gaps

Volume Complete
LSN (VCL)

AT CRASH

IMMEDIATELY AFTER CRASH RECOVERY

Figure 4: Log truncation during crash recovery

When opening a database volume, either for crash recovery or
for a normal startup, the database instance must be able to reach
at least a read quorum for each protection group comprising the
volume. The database instance can then locally re-compute PGCLs
and VCL for the database by finding read quorum consistency
points across SCLs. There may be a ragged edge of updates in
particular segments past this point that did not yet meet quorum.
These represent partial writes that did not complete and would not
have been acknowledged to clients of the database. The database
snips off the ragged edge of the log by recording a truncation
range that annuls any log records beyond the newly computed
VCL (Figure 4). This ensures that, even if in-flight asynchronous
operations complete during the process of crash recovery, they are
ignored. New redo records after crash recovery are allocated LSNs
above the truncation range.

If Aurora is unable to establish write quorum for one of its
protection groups, it initiates repair from the available read quorum
to rebuild the failed segments. Once the volume is available for reads

and writes, Aurora increments an epoch in its storage metadata
service and records this volume epoch in a write quorum of each
protection group comprising the volume. The volume epoch is
provided as part of every read or write request to a storage node.
Storage nodes will not accept requests at stale volume epochs. This
boxes out old instances with previously open connections from
accessing the storage volume after crash recovery has occurred.
Some systems use leases to establish short term entitlements to
access the system, but leases introduce latency when one needs to
wait for expiry. Aurora, rather than waiting for a lease to expire,
just changes the locks on the door.

No redo replay is required as part of crash recovery since seg-
ments are able to generate data blocks on their own. Undo of previ-
ously active transactions is required but can occur after the database
has been opened in parallel with user activity.

3 MAKING READS EFFICIENT
Reads are one of the few operations in Aurora where threads have
to wait. Unlike writes, which can stream asynchronously to storage
nodes, or commits, where a worker can move on to other work
while waiting for storage to acknowledge, a thread needing a block
not in cache typically must wait for the read I/O to complete before
it can progress.

In a quorum system, the I/O required for a read is amplified by
the size of the read quorum. Network traffic is far higher since
one is reading full data blocks, unlike writes, where Aurora only
ships log records. A buffer cache miss in Aurora’s quorum model
would seem to require a minimum of three read I/Os, and likely
five, to mask outlier latency and intermittent unavailability. Read
performance in quorum systems compares poorly to traditional
replication models where one writes to all copies, enabling a read
from just one, though those models have worse write availability.

3.1 Avoiding quorum reads
Aurora uses read views to support snapshot isolation using Multi-
Version Concurrency Control (MVCC). A read view establishes a
logical point in time before which a SQL statement must see all
changes and after which it may not see any changes other than its
own. Aurora MySQL does this by establishing the most recent SCN
and a list of transactions active as of that LSN. Data blocks seen by a
read request must be at or after the read view LSN and back out any
transactions either active as of that LSN or started after that LSN.
Aurora PostgreSQL also uses MVCC, though writes records out of
place, recording the transaction id with each record, and vacuuming
old versions periodically. Snapshot isolation is straightforward in a
single-node database instance by having a transaction read the last
durable version of a database block and apply undo to rollback any
changes. One must apply an invariant that undo records may not
be purged until all read views have advanced.

Even though Aurora does not write blocks to storage from the
database instance, it must support write-ahead logging by ensuring
redo log records for dirty blocks have been made durable before
discarding the block from cache. This ensures that the latest version
of a data block can always be found either in cache or in the cache
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or by finding the latest durable version of the block in one of the
segments of the protection group that it belongs to.

Aurora does not do quorum reads. Through its bookkeeping of
writes and consistency points, the database instance knows which
segments have the last durable version of a data block and can
request it directly from any of those segments. Avoiding the ampli-
fication of read quorums does make Aurora subject to latency when
storage nodes are down or jitter when they are busy. We manage
this by tracking response time from storage nodes for read requests.
The database instance will usually issue a request to the segment
with the lowest measured latency, but occasionally also query one
of the others in parallel to ensure up to date read latency response
times. If a request is taking longer than expected, will issue a read to
another storage node and accept whichever one returns first. This
caps the latency due to slow or unavailable segments. In an active
system, this can be done without request timeouts by inspecting
the list of outstanding requests when performing other I/Os.

3.2 Scaling Reads Using Read Replicas
Many database systems scale reads by replicating updates from
a writer instance to a set of read replica instances. Typically, this
involves transporting either logical statement updates or physical
redo log records from the writer to the readers. Replication is done
synchronously if the replicas are intended as failover targets with-
out data loss and asynchronously if replica lag or data loss during
failover is acceptable.

Both synchronous and asynchronous replication have undesir-
able characteristics. Synchronous replication introduces perfor-
mance jitter and failure modalities in the write path. Asynchronous
replication introduces data loss on failure of the writer. In both
cases, replication takes time to set up, requiring copying the un-
derlying database volume and catching up on active changes. It is
also expensive, since it doubles not only the instance costs, but also
storage costs. Much of the throughput of the replica instance goes
to replicate write activity, not to scaling reads.

Aurora supports logical replication to communicate with non-
Aurora systems and in cases where the application does not want
physical consistency – for example, when schemas differ. Internally,
within an Aurora cluster, we use physical replication. Aurora read
replicas attach to the same storage volume as the writer instance.
They receive a physical redo log stream from the writer instance
and use this to update only data blocks present in their local caches.
Redo records for uncached blocks can be discarded, as they can be
read from the shared storage volume.

This approach allows Aurora customers to quickly set up and tear
down replicas in response to sharp demand spikes, since durable
state is shared. Adding replicas does not change availability or
durability characteristics, since durable state is independent from
the number of instances accessing that state. There is little latency
added to the write path on the writer instance since replication
is asynchronous. Since we only update cached data blocks on the
replicas, most resources on the replica remain available for read re-
quests. And most importantly, if a commit has been marked durable
and acknowledged to the client, there is no data loss when a replica

is promoted to a write instance – it only needs to run a local crash
recovery to align its in-memory state.

3.3 Structural Consistency in Aurora Replicas
Managing structural consistency with asynchronous operations
against shared durable state requires care. A single writer has local
state for all writes and can easily coordinate snapshot isolation,
consistency points for storage, transaction ordering, and structural
atomicity. It is more complex for replicas.

Aurora uses three invariants to manage replicas. First, replica
read views must lag durability consistency points at the writer in-
stance. This ensures that the writer and reader need not coordinate
cache eviction. Second, structural changes to the database, for ex-
ample B-Tree splits and merges, must be made visible to the replica
atomically. This ensures consistency during block traversals. Third,
read views on replicas must be anchorable to equivalent points in
time on the writer instance. This ensures that snapshot isolation is
preserved across the system.

To understand structural consistency on the replica, let us first
examine structural consistency on the writer instance, using Au-
rora MySQL as an example. Each database transaction in Aurora
MySQL is a sequence of ordered mini-transactions (MTRs) that are
performed atomically. Each MTR is composed of changes to one
or more data blocks, represented as a batch of sequenced redo log
records to provide consistency of structural changes, such as those
involving B-Tree splits. The database instance acquires latches for
each data block, allocates a batch of contiguously ordered LSNs,
generates the log records, issues a write, shards then into write
buffers for each protection group associated with the blocks, and
writes them to the various storage nodes for the segments in the
protection group. We use an additional consistency point, the Vol-
ume Durable LSN (VDL), to represent the last LSN below VCL
representing an MTR completion.

Replicas do not have the benefit of the latching used at the
writer instance to prevent read requests from seeing non-atomic
structural updates. To create equivalent ordering, we ensure that log
records are only shipped from the writer instance in MTR chunks.
At the replica, they must be applied in LSN order, applied only if
above the VDL in the writer as seen in the replica, and applied
atomically in MTR chunks to the subset of blocks in the cache.
Read requests are made relative to VDL points to avoid seeing
structurally inconsistent data.

3.4 Snapshot Isolation and Read View Anchors
in Aurora Replicas

Once we have ensured that cached replica state is structurally
consistent, allowing traversal of physical data structures, we must
also ensure it is also logically consistent using snapshot isolation.

The redo log seen by a read replica does not carry the state
needed to establish SCL, PGCL, VCL, or VDL consistency points.
Nor is the read replica in the communication path between the
writer and storage nodes to establish this state on its own. Note
that VDL advances based on acknowledgements from storage nodes,
not redo issuance from the writer. The writer instance sends VDL
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update control records as part of its replication stream. Although
the active transaction list can be reconstructed at the replica us-
ing redo records and VDL advancement, for efficiency reasons we
ship commit notifications and maintain transaction commit history.
Read views at the replica are built based on these VDL points and
transaction commit history. Replicas revert active transactions for
MVCC using undo, just as on the writer instance.

Since VDL on the replica may lag the writer, Aurora storage
nodes must ensure that past values are available to be read. Au-
rora blocks are written out-of-place and non-destructively. Older
versions are not garbage collected until we can assure neither the
writer instance or any replica might need to access it. We do this by
maintaining a Protection Group Minimum Read Point LSN (PGM-
RPL), representing the lowest LSN read point for any active request
on that database instance. A storage node may only advance its
garbage collection point once PGMRPL has advanced for all in-
stances that have opened the volume. The storage nodes will only
accept read requests between PGMRPL and SCL.

4 FAILURES AND QUORUMMEMBERSHIP
Managing quorum failures is complex. Traditional mechanisms
cause I/O stalls while membership is being changed. They are gener-
ally intolerant of additional failures during the membership change
process. Most membership change protocols are intolerant of re-
admitting previously fenced-out members which is particularly
challenging – there is considerable state on storage nodes using
modern disks and repair takes time. For these reasons, systems tend
to be conservative about changing membership, increasing latency
and risking multiple faults that break quorum.

The probability of failures grows with the number of segments.
In Aurora, with six segments spread across three AZs for every
10GB of user data, a 64TB volume has 38,400 segments. Failures of
storage nodes, top of rack switches, network paths, or entire AZs
can impact many database volumes at the same time and require
several repairs. In this section, we describe how Aurora supports
I/O processing, multiple faults, and member re-introduction while
performing membership changes.

4.1 Using Quorum Sets to Change Membership
Consider a protection group with the six segments A, B, C, D, E,
and F. In Aurora, the write quorum is any four members out of this
set of six, and the read quorum is any three members. Let us assume
that a database instance or monitoring agent stops receiving timely
acknowledgements for segment F and wants to consider replacing
it with a new segment G. However, F may be encountering a tem-
porary failure and may come back quickly. It may be processing
requests, but not be observable to this monitor. It may just be busy.
At the same time, we do not want to wait to see if F comes back.
It may be permanently down. Waiting extends the duration of im-
pairment, during which we may see additional faults and increased
latency.

Aurora uses the abstraction of quorum sets to quickly transition
membership changes, using Boolean logic to ensure more sophis-
ticated read quorum and write quorums that are guaranteed to
overlap. We make at least two transitions per membership change,

ensuring each transition is reversible. Each membership change to
a protection group is associated with a membership epoch, which is
monotonically incrementedwith each change.Membership changes
do not block either reads or writes.

Each read or write request from an instance and each gossip
request from a peer segment passes in the epoch based on their
current understanding of quorum membership. As with volume
epochs, clients with stale membership epochs have their requests
rejected and must update membership information. An epoch in-
crement requires a write quorum to be met, just as any other write
does. The request to increment membership epoch must pass in
the correct membership epoch, just as any other request does. As
with our other epochs, membership epochs ensure we can update
membership without complex consensus, fence out others with-
out waiting for lease expiry, and operate using the same failure
tolerance as quorum reads and writes themselves.

A B C D E F

A B C D E F

A B C D E G

A B C D E F

A B C D E G

Epoch 1: All node healthy

Epoch 2: Node F is in suspect state; second 
quorum group is formed with node G; both 
quorums are active

Epoch 3: Node F is confirmed unhealthy; new 
quorum group with node G is active.

Figure 5: Quorum Membership Changes

Figure 5 illustrates how we replace segment F with segment
G. Rather than attempting to directly transition from ABCDEF
to ABCDEG, we make our transition in two steps. First, we add
G to our quorum, moving the write set to 4/6 of ABCDEF AND
4/6 of ABCDEG. The read set is therefore 3/6 of ABCDEF OR 3/6
of ABCDEG. If F comes back, we can make a second membership
change back to ABCDEF. That quorum subset met our write quorum
and is an available next step. If F continues to be down once G has
completed hydrating from its peers, we can make a membership
change to ABCDEG. That quorum subset also met our write quorum
and is an available next step. We do not discard any durable state
until back to a fully repaired quorum.

Let us now consider what happens if E also fails while we are
replacing F with G, and we wish to replace it with H. In this case,
we would move from a write quorum set of ((4/6 of ABCDEF AND
4/6 of ABCDEG) AND (4/6 of ABCDFH AND 4/6 of ABCDGH)). As
with a single failure, I/Os can proceed, the operation is reversible,
and the membership change can occur with an epoch increment.
Note that, both with a single failure and with multiple failures,
simply writing to the four members ABCD meets quorum.

Quorum membership changes have the same failure character-
istics as read and write I/Os. Using Boolean logic, we can prove
that each transition is correct, safe, and reversible, whatever the
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sequence of errors and repairs may be. Transitions require only the
single epoch update to the write quorum of a protection group. Up-
dates of stale state are similarly simple, requiring just one additional
request past the one rejected.

We also use epochs to manage volume growth, using a volume
geometry epoch that increments with each protection group added
to the volume. This can also be used to change the quorum model
itself, for example, when moving from a 4/6 write quorum to 3/4 to
handle the extended loss of an AZ.

4.2 Using Quorum Sets to Reduce Costs
Quorums are generally thought of as a collection of like members,
grouped together to transparently handle failures. However, there
is nothing in the quorum model to prevent unlike members with
differing latency, cost, or durability characteristics.

In Aurora, a protection group is composed of three full segments,
which store both redo log records and materialized data blocks, and
three tail segments, which contain redo log records alone. Since
most databases use much more space for data blocks than for redo
logs, this yields a cost amplification closer to three copies of the data
rather than a full six while satisfying our requirement to support
AZ+1 failures.

The use of full and tail segments changes how we construct our
read and write sets. Our write quorum is 4/6 of any segment OR 3/3
of full segments. Our read quorum is therefore 3/6 of any segment
AND 1/3 of full segments. In practice, this means that we write log
records to the same 4/6 quorum as we did previously. At least one
of these log records arrives at a full segment and generates a data
block. We read data from our full segments, using the optimization
described earlier to avoid quorum reads.

Repairing a tail segment simply requires reading from the other
members of the protection group, using our SCL to determine and
fill in the gaps from other quorum members with SCLs higher than
our own. Repairing a full segment is a bit more complex since the
segment being repaired may have been the only full segment that
saw the last write to the protection group.

Even so, we must have at least one other full segment from
which we can read data blocks even if it has not seen the most
recent write. We have enough copies of the redo log record so that
we can rebuild a full segment and be up to date. We also gossip
between the segments of a quorum to ensure that any missing
writes are quickly filled in. This reduces the probability we need to
rebuild a full segment without adding a performance burden to our
write path. Once we have our full segment baseline, we can obtain
redo log records from other segments using our SCL in the same
manner as tail segments.

There are many options available once one moves to quorum sets
of unlike members. One can combine local disks to reduce latency
and remote disks for durability and availability. One can combine
SSDs for performance and HDDs for cost. One can span quorums
across regions to improve disaster recovery. There are numerous
moving parts that one needs to get right, but the payoffs can be
significant. For Aurora, the quorum set model described earlier lets

us achieve storage prices comparable to low-cost alternatives, while
providing high durability, availability, and performance.

5 RELATEDWORK
In this section we discuss other contributions and how they relate
to the techniques used in Aurora and discussed in this paper.

Consensus and Distributed Transactions. Distributed systems
rely on consensus to allow a group of processes to agree on a sin-
gle value and tolerate faults in one or more of its members. Some
notable consensus algorithms include Paxos and variants [4, 5],
Raft [9], and Viewstamped Replication [8]. A distributed database
requires a commit protocol that enforces that all processes start out
in a “working” state and all either end in an “aborted” or “committed”
state. Distributed commit may be implemented using consensus
protocols such as Paxos or other approaches like 2-phase commit
and can incur considerable network overheads. Another recent sys-
tem that avoids the use of distributed commit is Calvin [11] which
implements a transaction scheduling and data replication layer that
uses a deterministic ordering guarantee. Since all nodes reach an
agreement regarding what transactions to attempt and in what or-
der, Calvin is able to completely avoid distributed commit protocols,
reducing the contention footprints of distributed transactions.

Quorums.Quorum-based approaches have been used for distributed
commit protocols [10] as well as for replicating data [3].

Distributed SQL Databases. Google Cloud Spanner [1] is a SQL
database on a quorum replicated system, using Multi-Paxos to
establish consensus for every write providing strong consistency
guarantees. Cloud Spanner enables clustering of tables to reduce
the participants in distributed transactions.

Replication. Traditional database replication techniques consume
a physical or logical log that represents changes made in the data-
base and replicates these changes in a completely independent
database. For example, Liu et al [6] describe how DB2 implements
transactional replication from a partitioned database system by com-
bining the physical write-ahead log from each node. Oracle uses
physical replication via Data Guard [2] to provide high availability
and disaster recovery. Some database systems like MySQL support
logical replication [7] using command/statement logging [13].

6 CONCLUSIONS
Aurora avoids considerable network, storage, and database process-
ing by leveraging a few simple techniques to avoid complex, brittle,
and expensive consensus protocols. Most distributed consensus
algorithms abhor state and establish their baseline from first prin-
ciples. But, databases are all about the management of state. Why
not use it for our own benefit?

Aurora is able to avoid much of the work of consensus by recog-
nizing that, during normal forward processing of a system, there
are local oases of consistency. Using backward chaining of redo
records, a storage node can tell if it is missing data and gossip with
its peers to fill in gaps. Using the advancement of segment chains,
a database instance can determine whether it can advance durable
points and reply to clients requesting commits. Coordination and
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consensus is rarely required. While this state is ephemeral, it can
be re-established when recovering from failure.

The use of monotonically increasing consistency points – SCLs,
PGCLs, PGMRPLs, VCLs, and VDLs – ensures the representation
of consistency points is compact and comparable. These may seem
like complex concepts but are just the extension of familiar database
notions of LSNs and SCNs. The key invariant is that the log only ever
marches forward. This also simplifies the process of coordinating
multiple request processors, as shown here for replicas operating
against common storage.

Epochs provide a simple way to make changes to a distributed
system, only relying on the basic notions of reading and writing
to the relevant quorums. This ensures there is a consistent way to
reason about availability and durability, and that there are no sharp
edges when recovering from failures or changing how one must
interact with a quorum. The combination of epochs and quorum sets
make changes reversible and non-blocking, making membership
change decisions inconsequential. Quorum sets also open up system
design to more sophisticated architectures to reduce latency and
cost while improving availability and durability.

We believe these techniques are broadly applicable beyond sys-
tems like Aurora to other systems coordinating multiple actors or
involving shared state.
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